PHOTOCHEMICAL CYCLOADDITIONS OF THIOPARABANATES TO OLEFINS

Hans Gotthardt* and Sonja Nieberl

Institut für Organische Chemie der Universität München, D-8000 München 2, Karlstrasse 23, Germany

(Received in UK 1 August 1974; accepted for publication 9 August 1974)

Diarylthioketones^{1,2}, thiophosgene³, and thione carbonates⁴ react with substituted alkenes under photochemical conditions to give thietanes and in some cases, 1,4-dithianes. It is known that thioparabanates, <u>1</u>, undergo photoreduction in ethanolic solution⁵. However, the formation of a small amount (3%) of a thietane derivative has also been observed in the reaction of <u>1b</u> with 2methyl-2-butene⁵. In this communication, we would like to report that thioparabanates, <u>1</u>, are highly reactive towards electron-rich and electron-poor olefins, if they are excited using light of proper wavelength.

It might be mentioned that the uv absorption spectrum (benzene) of 1,3-diphenyl-2-thioparabanate (<u>1a</u>) exhibits the $n \rightarrow \pi^*$ transition of the C=S chromophore at 4450 Å (ϵ = 52), whereas, the long-wavelength $\pi \rightarrow \pi^*$ transition lies at 3125 Å. Consequently, irradiation of <u>1</u> using light of wavelength >4000 Å allows a selective excitation of <u>1</u> to the n,π^* state.

3397

When a degassed benzene solution of $\underline{1a}$ (0.014 m) and ethoxyethylene (0.32 m) was irradiated using >4000 Å light, colourless crystals of the spiro thietane derivative, $\underline{2a}$, were obtained in 88% yield, after recrystalization from methanol ($\underline{2a}$: mp 198.5 - 200.5°; ir, 1745 cm⁻¹ (C=0); nmr⁶, $\tau = 8.79$ (t, J =7.1 Hz, CH₃), 7.73 (t, J = 8.5 Hz, CH), 7.28 (t, J = 8.5 Hz, CH), 6.44 (q, J =7.1 Hz, OCH₂), 5.33 (t, J = 8.5 Hz, CH), 2.46 (mc, 2 C₆H₅); ms⁷, <u>m/e</u> = 354 (M⁺), 308 (M⁺-CH₂S), 282 (M⁺-C₄H₈O)). The peak at <u>m/e</u>, 308 strongly suggests that the ethoxy substituent is attached at the 3-position.

The photochemical reaction of <u>1b</u> with ethoxyethylene, on the other hand, gave a mixture of <u>2b</u> and <u>3</u> (65:35), in a 77% yield (<u>2b</u>: mp 138 - 139[°]; ir, 1738, 1720 cm⁻¹ (C=O); nmr (C₆H₆), $\tau = 9.19$ (t, J = 7.2 Hz, CH₃), 7.36 (d, J = 8.4 Hz, CH₂), 6.93 (q, J = 7.2 Hz, OCH₂), 7.03, 6.79 (2s, 2 NCH₃), 5.45 (t, J = 8.4 Hz, CH); ms, <u>m/e</u> = 230 (M⁺), 184 (M⁺-CH₂S), 158 (M⁺-C₄H₈O); <u>3</u>: mp 103-106[°]; nmr, $\tau = 8.62$ (t, J = 7.1 Hz, CH₃), 6.75, 6.44 (2s, 2 NCH₃), 5.95 (q, J = 7.1 Hz, OCH₂), 3.99 (s, =CH); ms, <u>m/e</u> = 184 (M⁺)). The formation of <u>3</u> in this reaction may be rationalized in terms of the photofragmentation of <u>2b</u>.

Also, it has been observed that alkenes having electron-withdrawing substituents, react with $\underline{1}$ to give thietanes. Thus, irradiation of $\underline{1}\underline{a}$ in presence of methyl acrylate gave a mixture of $\underline{4}\underline{a}$ and $\underline{5}\underline{a}$ in a 45:55 ratio ($\underline{4}\underline{a}$: mp 122 - 124^o; ir, 1750, 1726 cm⁻¹ (C=O); nmr, $\tau = 7.56$, 7.33 (2t, J = 9.0 Hz, CH₂), 6.28 (s, OCH₃), 5.44 (t, J = 9.0 Hz, CH), 2.46 (mc, 2 C₆H₅); ms, <u>m/e</u> = 368 (M⁺), 322 (M⁺-

 CH_2S , 282 $(M^+-C_4H_6O_2)$; $\underline{5a}$: mp 205 - 207°; ir, 1760, 1706, 1665 cm⁻¹ (C=O); nmr, $\tau = 6.90$ (s, OCH₃), 5.08 (s, =CH₂), 2.71 - 2.36 (m, 2 C₆H₅); ms, <u>m/e</u> = 322 (M⁺)).

Similarly, the reaction of <u>1b</u> with methyl acrylate yields a mixture of <u>4b</u> (60%) and <u>5b</u> (25%) (<u>4b</u>: mp 165.5 - 167^o; ir, 1758, 1747, 1732 cm⁻¹ (C=O); nmr, $\tau = 7.03$ (t, J = 9.4 Hz, CH), 6.71, 6.66 (2s, 2 NCH₃), 6.46 (t, J = 9.4 Hz, CH), 6.30 (s, OCH₃), 5.26 (t, J = 9.4 Hz, CH); ms, <u>m/e</u> = 244 (M⁺), 198 (M⁺-CH₂S), 158 (M⁺-C₄H₆O₂); <u>5b</u>: mp 152 - 153^o; nmr, $\tau = 6.70$, 6.41 (2s, 2 NCH₃), 6.17 (s, OCH₃), 4.82 (s, =CH); ms, <u>m/e</u> = 198 (M⁺).

It has been reported that no photocycloaddition occurs between $\underline{1a}$ and 2-methyl-2-butene⁵. In contrast, our findings show that the light-induced reaction of $\underline{1a}$ in presence of 2-methyl-2-butene yields the 1:1-adduct, $\underline{6}$ in a 30% yield ($\underline{6}$: mp 256 - 257°; ir, 1740 cm⁻¹ (C=O); nmr, $\tau = 9.08$ (d, J = 7.0 Hz, CH₃), 8.93, 8.85 (2s, 2 CH₃), 7.04 (q, J = 7.0 Hz, CH), 2.48 - 1.88 (m, 2 C₆H₅); ms, $\underline{m/e} = 352$ (M⁺), 292 (M⁺-C₂H₄S), 282 (M⁺-C₅H₁₀)).

Finally, the reaction of <u>1b</u> with tetramethylallene under similar conditions gave a 22% yield of <u>7</u> (<u>7</u>: mp 207 - 208[°]; ir, 1740 cm⁻¹ (C=O); nmr, $\tau = 8.52$ (s, 2 CH₃), 8.36, 8.21 (2s, 2 CH₃), 6.56 (s, 2 NCH₃); ms, <u>m/e</u> = 254 (M⁺), 168 (M⁺-C₄H₆S), 158 (M⁺-C₇H₁₂)).

The scope and mechanism of these photochemical cycloadditions are presently under investigation. All new compounds gave satisfactory analytical results.

Acknowledgement: We thank the Fondsder Chemischen Industrie for financial support.

REFERENCES

- 1. A.Ohno, Y.Ohnishi, and G.Tsuchihashi, J.Amer.Chem.Soc. 91, 5038 (1969).
- H.Gotthardt, <u>Chem.Ber.</u> <u>105</u>, 2008 (1972); <u>107</u>, 1856 (1974), and references cited there.
- 3. H.Gotthardt, Tetrahedron Lett. 1973, 1221.
- 4. H.Gotthardt and M.Listl, Tetrahedron Lett. 1973, 2849.
- T.Yonezawa, M.Matsumoto, Y.Matsumura, and H.Kato, <u>Bull.Chem.Soc.Jap.</u> <u>42</u>, 2323 (1969).
- If not stated otherwise, the nmr spectra were taken in CDCl₃ with TMS as internal standard, on a Varian A60, spectrometer.
- The mass spectra were determined using a AEI MS 902, mass spectrometer at 70 ev.